Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus
نویسندگان
چکیده
منابع مشابه
Limit cycles bifurcating from a degenerate center
We study the maximum number of limit cycles that can bifurcate from a degenerate center of a cubic homogeneous polynomial differential system. Using the averaging method of second order and perturbing inside the class of all cubic polynomial differential systems we prove that at most three limit cycles can bifurcate from the degenerate center. As far as we know this is the first time that a com...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کاملevaluation of sadr eminence in safavid period
چکیده: یکی از دوره های مهم تاریخی ایران به لحاظ تأمین استقلال ملی مذهبی و حتی تأثیر آن بر فرهنگ و مذهب ایرانیان، دوره صفویه است. رسمیت دادن و رواج مذهب شیعه توسط شاه اسماعیل اول، یکی از مهمترین اقدامات این دولت محسوب می شود. بنابراین برای اجرای این سیاست، وی منصب صدارت را به عنوان منصبی مذهبی- حکو متی ایجاد کرد .این منصب از دوره ی تیموریان ایجاد شده بود ولی در اواخر این دوره اهمیت بیشتری یافت...
15 صفحه اولLimit Cycles Bifurcating from a Perturbed Quartic Center
We consider the quartic center ẋ = −yf(x, y), ẏ = xf(x, y), with f(x, y) = (x+a)(y+b)(x+c) and abc 6= 0. Here we study the maximum number σ of limit cycles which can bifurcate from the periodic orbits of this quartic center when we perturb it inside the class of polynomial vector fields of degree n, using the averaging theory of first order. We prove that 4[(n− 1)/2] + 4 ≤ σ ≤ 5[(n− 1)/2 + 14, ...
متن کاملLimit cycles bifurcating from the periodic annulus of the weight-homogeneous polynomial centers of weight-degree 2
We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of a family of cubic polynomial differential centers when it is perturbed inside the class of all cubic polynomial differential systems. The family considered is the unique family of weight–homogeneous polynomial differential systems of weight–degree 2 with a center.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2013
ISSN: 0362-546X
DOI: 10.1016/j.na.2012.10.017